008产品设计的思考(创造思维+用户体验+用户画像+用户群体)

一、产品优化创造思维如何培养

1.1 产品优化创造思维培养

  1. 产品设计的思维
    【设计思维是以人为本的利用设计师的敏感性以及设计方法在满足技术可实现性和商业可行性的前提下来满足人的需求的设计精神和方法。—IDEO设计公司总裁Tim Brown】
    (1)以人为本—落地需求可行性。人们真的是需要的吗
    (2)科技为本–落地实施可行性。比如电池问题,漏洞。
    (3)商业环境为本–落地盈利可行性。
  2. 做有温度的产品。细节决定成败
  3. 吉祥物和logo
    目的:增强用户的认知、形象化简历情感链接、品牌差异化、增加附加值。
  4. 品牌
    品牌溢价即品牌的附加值。一个品牌同样的产品能比竞争品牌卖出更高的价格,称为品牌的溢价能力。建立品牌意识。
  5. 建立产品气质
    (1)超出预期。幸福 = 效果/期望值。
    用户真心想要的产品和服务于他们实际购买或者使用的东西之间,总是存在一道巨大的鸿沟,而这道鸿沟,就代表着创造新需求的机会,也就是说,越过这道鸿沟,就表示超出用户的预期。
    (2)人性设计。
    乔布斯的设计理念:极简明快(少即是多,作必要的减法)、直指人心(用户的需求得到满足,产品不背离核心)、不离现实(设计来源于生活,要注重观察了解生活细节)、活用实用、继承传统、不断超越。
    (3)情感共鸣。
    将产品打造成用户的知音、知己,有温度,有情感,沟通默契,以求最终感动用户。设计的时候为用户照相,细心体贴,从而引发共鸣。
  6. 扩大视野
    (1)圈子、人脉
    (2)看书
    (3)互联网查阅资料

二、用户体验设计原则

2.1 可见原则

保证页面的内容可见、状态可见、变化可见。任何需要出现的信息,都改在出现的地方出现。

2.2 场景贴切原则

设计要结合场景(时间、地点、人物、事件、环境),贴切场景。

2.3 可控原则

用户需要自己能够把控产品运行的状态。

2.4 一致性原则

用户需要在同一套产品中接受同一套规范。比如:粉丝–关注者。回复验证码即可绑定账号。

2.5 防错、防呆原则

用尽量足够的提醒和设计,让用户不要混淆。

2.6 协助用户记忆原则

在需要记忆某些信息的时候,产品要帮助。比如:删除7张照片将从该文件夹中移除的提示。

2.7 简约易读原则

界面要足够的简单、简约易读。

2.8 容错原则

向用户提醒犯错的可能,并提供用户挽回错误的方法。比如输入错误密码时。

2.9 灵活高效原则

用户在使用时,要方便、高效地完成任务。比如出现您可能想要发送的图片。

三、用户角色和用户画像

3.1 用户角色

3.1.1 概念

user persona,从用户群体中抽象出来的典型用户,一般会包含:
(1)个人基本信息
(2)家庭、工作、生活环境描述
(3)与产品使用相关的具体情境,用户目标或产品使用行为描述等

3.1.2 特点

(1)用户角色是用户属性的集合,不是具体的谁
(2)它应该能准确描述出产品用户,一般会设置三到四个用户角色。
也是通常意义上的目标用户群体。

3.1.3 目的

(1)在产品早期和发展期,会较多地借助用户角色, 帮助产品人员,理解用户需求。
(2)从为所有人做产品,变成为三四个人做产品,间接地降低了复杂度。
(3)堵住产品的决策和设计,尽可能减少主观臆测,理解用户到底真正的需要什么,从而知道如何更好地为不同类型的用户服务。

3.2 用户画像

用户画像是根据用户社会属性、生活习惯和消费行为等信息而抽象出的一个标签化的用户模型。
构建用户画像的核心工作是给用户贴标签,而标签是通过度一户信息分析而来的高度精炼的特征标识。
用户标签:静态标签(稳定的信息)、动态标签(不稳定的信息)。

3.2.1 静态信息

(1)维度一:人口属性
自然属性:姓名、性别、年龄、身高、体重、地域、星座、血型等
社会属性:职业、婚姻、教育程度等
区别:自然属性具有先天性,一旦形成将一直保持着稳定不变的状态,比如性别、地域、血型。社会属性则是后天形成的,处于相对稳定的状态,比如职业、婚姻。
(2)维度二:心理现象
心理:思维、想象、言语等
个性:勇敢、怯懦、优柔寡断、开朗、抑郁等
结合人口属性和心理现象都带有先天的性质,整体处于稳定的状态,共同组成用户画像最表面以及最内里的信息素,由此形成稳定的静态标签。

3.2.2 动态信息

(1)维度一:网站行为属性
1​.搜索、浏览、评论、点赞、加入购物车、购买、使用优惠券等等。
2.不同的时间、场景,这些信息不断发生着变化,他们都属于动态信息。
3.企业通过捕捉用户的这些数据,可以对用户进行深浅度归类,区分活跃/不活跃用户。
(2)维度二:社交网络行为
1​.市值发生在虚拟的社交软件平台(微博、微信、论坛、贴吧等)一些列的用户行为。
2.包括基本的访问行为(搜索、注册、登陆等)、社交行为(邀请、添加、取关好友、加入群、新建群等)信息发布行为(添加、发布、删除、留言、分享、收藏等)
董涛标签就是hi根据用户的操作行为给用户打上不同的行为标签,可以获取到大量的网络行为数据、网站行为数据、用户内容偏好数据、用户交易数据。这些数据进一步填充了用户信息,与静态标签一起构成了完整的例题用户画像,也就是所说的3D用户画像。

3.2.3 用户画像总结

  1. 用户角色通常出现先产品研发阶段及产品上线初期,鉴于企业手中没有大量的用户数据和行为记录,只能根据典型用户提出的需求建立用户角色。
  2. 用户画像是基于数据分析通过关注用户的静态标签(姓名、性别、年龄、身高、体重、职业、地域、受教育程度、婚姻、星座、血型……)和动态标签(网络行为数据、网站行为数据、用户内容偏好数据、用户交易数据)结合,可以以用户画像群卡片的形式和3D用户画像等多种形式展现。

3.3 常用的三套用户画像

  1. 核心用户、次要用户、小众用户、负面用户
    (1)核心用户群:
    泛指用户群体规模普遍偏大,忠诚度高,方便培养成社群核心,具备反哺平台的能力,
    能为平台创造价值实现盈利。
    (2)次要用户群:
    次要用户群体泛指用户群体规模相对较大,忠诚度较高,乐于参与但创造价值能力有限。
    (3)小众用户群:
    小众用户群泛指用户群体规模较小,忠诚度不高,留恋平台某单一功能,活跃度低。
    (4)负面用户群:
    负面用户群泛指用户群体行为言论主要针对平台缺陷功能提出问题或质疑,重视该群体声音
    可以快速改善平台用户体验。
  2. 羊、羊头、狼
    如果我有一片草地,我就在我的草地上养羊,所以我要有第一只羊。
    如果这一只羊能够在我的草地上活下来,并且玩的很好,很开心,那么我的草地就是没问题的,我可以引入更多的羊。
    羊多了,我就需要头羊进行管理。
    羊多了,就会有狼,我把羊圈起来,向狼收费。
    我们一共谈论到了三个用户画像,第一只羊,羊头和狼。
  3. 大明、笨笨、小闲
    大明:对自己的需求非常了解、非常清晰。比如,一个男生要买一件衬衫或者一件3C产品。那么他需要寻找的核心是配置、价格和效率。谁(什么平台或产品)服务大明?
    笨笨:有需求,但是不明确。她只是想逛逛而已。谁服务笨笨?
    小闲:我没有消费需求,我就是来打发时间的。谁服务小闲?

四、用户群体卡片

4.1 用户群体卡片

单一抽象的用户画像无法全面地评估用户真实需求,我们需要建立用户画像群卡片,做到一张卡片,就能代表一个典型用户群体。

  1. 用户画像群卡片根据自身产品行业设置维度,使用跟产品相关联的用户静态标签,常用的维度如:性别、年龄、地域、职业、收入、性格特征等。
  2. 改变单一变量范围即可获得一张新用户画像群卡片
    在这里插入图片描述
    在这里插入图片描述

4.2 举例

需求:现在我们要做一款众包原生小说APP,网络小说环境的痛点在于“很多人往往把自己的写作热情当做是自身写作天赋—钱钟书”,大量的虎头蛇尾、太监文、光环文开篇引人入胜,但中期质量严重下降,我们要通过用户票选&众包的形式为网络文学市场填充原创优质内容。现在请根据该项目需求建立用户群体卡片。并划分核心用户群、次要用户群、小众用户群、负面用户群。
在这里插入图片描述

4.3 用户使用场景

用户会有各式各样的生活场景,在各种生活场景的促使下自然也就会生出很多的需求出来,有些作者喜欢深夜写作,有些作者喜欢通过采集真实故事改变时间地点人物。有些读者喜欢午休时间看小说,还有些读者习惯在上课、工作时间阅读小说。所以无论是核心用户群还是次要用户群以及小众用户群和负面用户群都有各自不同的使用场景,对应场景下就存在着用户不同的需求。
在这里插入图片描述

WHO(谁) :定义用户群,明确我们的研究对象。主要是用于做用户分类,划分用户群体。
WHEN( 时间) :事件发生时间。
WHERE( 在哪里) :就是指用户发生行为的接触点。
WHAT( 做了什么) :就是指的用户发生了怎样的行为
在这里插入图片描述

当把这些需求列完之后,我们就要开始思考,在“用户群体卡片”中,哪些群体是具备这些
需求的,也就是有些需求是属于a用户群体卡片的,有些需求是属于b用户群体卡片的,有
些需求是a和b用户群体卡片共有的,分析完这些后,再把刚才列举出来的需求放入到之前
整理的用户群体卡片库中
在这里插入图片描述

需求分为三个层次:基础型需求,优化型需求,兴奋型需求。
基础型需求: 用户的这些需求没有得到满足,他们会很不舒服,如果产品没有满足他们,他们可能就会弃产品而去。
优化型需求:用户的这些需求没有得到满足不会不爽,但是用户会期望这些需求得到满足,且满足了用户会对产品的满意度会高,且满足得越多满意度就越高,于此和别的产品区分开。
兴奋型需求: 用户这些需求是潜意识的,基本自己不会发掘,如果产品满足了用户会惊喜万分,对产品的满意度会大大提升。
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

已标记关键词 清除标记
数据运营 作用&意义 知错能改,善莫大焉 —错在哪里,数据分析告诉你 运筹帷幄,决胜千里 —怎么做好“运筹”,数据分析告诉你 以往鉴来,未卜先知 —怎么发现历史的规律以预测未来,数据分析告诉你 工作思维 对业务的透彻理解是数据分析的前提 数据分析是精细化运营,要建立起体系化思维(金字塔思维) 自上而下 目标—维度拆解—数据分析模型—发现问题—优化策略 自下而上 异常数据 影响因素 影响因素与问题数据之间的相关关系 原因 优化策略 数据化运营7大经典思路 以目标为导向,学会数据拆分 细分到极致 追踪思路 运营的问题,是追踪出来的,不是一次就看出来的 所有的数据都是靠积累和沉淀才能发现问题,单一的数字没有任何 意义,只能称为 “数值” 结合/拆分思路 追踪数据,多个维度结合分析。 从多个维度拆分数据 对比思路 大的营销事件作为节点单独标记,数据剔除出来单独进行分析 节点思路 如运营活动等 行为标记思路 将大动作的优化,大的项目上线及时标注在数据报表中 培养数据的敏感度 培养数据思维,从每天的各种数据报表开始 数据来源 数据埋点 初级 追踪每次用户的行为,统计关键流程的使用程度 中级 在产品中植入多段代码追踪用户连续行为,建立用户模型来具体化用户在使用产品中的操作行为 高级 研发团队合作,通过数据埋点还原出用户画像用户行为 常用数据分析工具 友盟、Talkingdata 友盟的页面访问分析,对帮助分析用户流失有重要指导意义 网站Alexa排名查询、爱站网、中国网站排名、网络媒体排名 禅大师、ASO100 各种指数 百度指数、搜狗指数、腾讯浏览指数、360指数、某视频网站指数 数据库、运营后台等 工作内容 数据监控 检测异常指标,发现用户对您产品的”怒点“ 如:多次获取手机验证码,次数剧增 这里需要考虑有一个监控指标 新功能数据分析 通过留存曲线检验新功能的效果 通过留存看新功能用户的接受程度 通过用户反馈或调研,了解新功能接受度 数据指标 标记: 红色 整体概况 1、[大盘数据]用户及收入表格+折线图 注册用户(今天、昨日、近3天、近7日、近30天、全部) 新增用户、付费用户、充值总额 2、同时在线趋势折线图 在线人数一向是游戏火热程度的最好衡量 需要有同期对比功能,有参照物才能更好的比较 3、付费渗透 日付费率变化折线图 日付费率通常不稳定,一般情况下看周付费率或月付费率 付费率=充值人数/活跃人数*100% ARPU值变化折线图 ARPU值=总收入/活跃人数 ARPU值影响因素 活跃人数DAU发生较大变化 运营活动影响 金字塔 大R 是否有大R用户异常波动(大R用户流失或大R用户进入) 中、小R 大量中R、小R用户出现或消失 ARPPU值变化折线图 ARPPU值=总收入/付费人数 可以用来监控大R用户异常变化情况 如果该值异常波动,请进一步看鲸鱼用户数据 4、用户留存 新用户留存 次日、3日、7日、14日、30日留存 次日留存是对玩家“第一游戏体验”的最佳印证 与游戏的类型、题材、玩法、美术风格、游戏前期内容吸引度、新手引导有效性有直接的相关性 如果导入的新增玩家群体对游戏题材、玩法、美术风格不予认可,留存将会很差,且可优化的空间较小 优化新手引导和前期的游戏内容则可以有效帮助提升次日留存 7日、30日留存则与游戏难度、持续的活动运营、游戏内奖励机制有密不可分的关系 活跃用户留存 一般不分析活跃用户留存,而是通过DAU观察活跃用户流失数据 留存是评定游戏综合质量的最佳指标 5、平均使用时长和平均使用次数 可以使用柱状图来展现 两项宏观行为指标可反映出用户对app的依赖程度 如果留存较好,但时长和次数均不高,则可能是因过于强调每日登录奖励,但持续的app内容用户家缺乏吸引力所致 用户分析 用户规模 下载数量 新增用户 定义:每日注册并登录游戏的用户数量 ——解决问题 渠道贡献新用户份额分布,监控重点渠道 宏观走势,是否需要进行市场投放 判断是否存在渠道作弊行为、渠道包被下架等问题 日一次会话用户数 即新登用户中只有一次会话,且会话时长低于门阀值 ——解决问题 推广渠道是否有刷量作弊行为 渠道推广质量是否合格 用户导入是否存在障碍点,如网络状况和加载时间等 用户获取成本 解决问题 获取有效新登用户成本 如何选择正确的渠道优化投放 需要根据渠道来细分不同渠道的获取用户成本 了解用户成本 活跃用户 DAU(日活跃用户) 定义 每日登录过游戏的用户 解决问题 了解游戏的核心用户规模 了解游戏产品生命周期变化趋势、渠道活跃用户生命周期 了解游戏产品老用户流失和活跃情况 注意事项 日活跃=新增用户+回流用户+老用户 如果日活跃依靠新增为维持,留存肯定有问题 健康比例3:7,当然不同产品会有一定差异 WAU(周活跃用户) 定义 截止当日,最近
相关推荐
数据运营 作用&意义 知错能改,善莫大焉 —错在哪里,数据分析告诉你 运筹帷幄,决胜千里 —怎么做好“运筹”,数据分析告诉你 以往鉴来,未卜先知 —怎么发现历史的规律以预测未来,数据分析告诉你 工作思维 对业务的透彻理解是数据分析的前提 数据分析是精细化运营,要建立起体系化思维(金字塔思维) 自上而下 目标—维度拆解—数据分析模型—发现问题—优化策略 自下而上 异常数据 影响因素 影响因素与问题数据之间的相关关系 原因 优化策略 数据化运营7大经典思路 以目标为导向,学会数据拆分 细分到极致 追踪思路 运营的问题,是追踪出来的,不是一次就看出来的 所有的数据都是靠积累和沉淀才能发现问题,单一的数字没有任何意义,只能称为 “数值” 结合/拆分思路 追踪数据,多个维度结合分析。 从多个维度拆分数据 对比思路 大的营销事件作为节点单独标记,数据剔除出来单独进行分析 节点思路 如运营活动等 行为标记思路 将大动作的优化,大的项目上线及时标注在数据报表中 培养数据的敏感度 培养数据思维,从每天的各种数据报表开始 数据来源 数据埋点 初级 追踪每次用户的行为,统计关键流程的使用程度 中级 在产品中植入多段代码追踪用户连续行为,建立用户模型来具体化用户在使用产品中的操作行为 高级 研发团队合作,通过数据埋点还原出用户画像用户行为 常用数据分析工具 友盟、Talkingdata 友盟的页面访问分析,对帮助分析用户流失有重要指导意义 网站Alexa排名查询、爱站网、中国网站排名、网络媒体排名 禅大师、ASO100 各种指数 百度指数、搜狗指数、腾讯浏览指数、360指数、某视频网站指数 数据库、运营后台等 工作内容 数据监控 检测异常指标,发现用户对您产品的”怒点“ 如:多次获取手机验证码,次数剧增 这里需要考虑有一个监控指标 新功能数据分析 通过留存曲线检验新功能的效果 通过留存看新功能用户的接受程度 通过用户反馈或调研,了解新功能接受度 数据指标 标记: 红色 整体概况 1、[大盘数据]用户及收入表格+折线图 注册用户(今天、昨日、近3天、近7日、近30天、全部) 新增用户、付费用户、充值总额 2、同时在线趋势折线图 在线人数一向是游戏火热程度的最好衡量 需要有同期对比功能,有参照物才能更好的比较 3、付费渗透 日付费率变化折线图 日付费率通常不稳定,一般情况下看周付费率或月付费率 付费率=充值人数/活跃人数*100% ARPU值变化折线图 ARPU值=总收入/活跃人数 ARPU值影响因素 活跃人数DAU发生较大变化 运营活动影响 金字塔 大R 是否有大R用户异常波动(大R用户流失或大R用户进入) 中、小R 大量中R、小R用户出现或消失 ARPPU值变化折线图 ARPPU值=总收入/付费人数 可以用来监控大R用户异常变化情况 如果该值异常波动,请进一步看鲸鱼用户数据 4、用户留存 新用户留存 次日、3日、7日、14日、30日留存 次日留存是对玩家“第一游戏体验”的最佳印证 与游戏的类型、题材、玩法、美术风格、游戏前期内容吸引度、新手引导有效性有直接的相关性 如果导入的新增玩家群体对游戏题材、玩法、美术风格不予认可,留存将会很差,且可优化的空间较小 优化新手引导和前期的游戏内容则可以有效帮助提升次日留存 7日、30日留存则与游戏难度、持续的活动运营、游戏内奖励机制有密不可分的关系 活跃用户留存 一般不分析活跃用户留存,而是通过DAU观察活跃用户流失数据 留存是评定游戏综合质量的最佳指标 5、平均使用时长和平均使用次数 可以使用柱状图来展现 两项宏观行为指标可反映出用户对app的依赖程度 如果留存较好,但时长和次数均不高,则可能是因过于强调每日登录奖励,但持续的app内容用户家缺乏吸引力所致 用户分析 用户规模 下载数量 新增用户 定义:每日注册并登录游戏的用户数量 ——解决问题 渠道贡献新用户份额分布,监控重点渠道 宏观走势,是否需要进行市场投放 判断是否存在渠道作弊行为、渠道包被下架等问题 日一次会话用户数 即新登用户中只有一次会话,且会话时长低于门阀值 ——解决问题 推广渠道是否有刷量作弊行为 渠道推广质量是否合格 用户导入是否存在障碍点,如网络状况和加载时间等 用户获取成本 解决问题 获取有效新登用户成本 如何选择正确的渠道优化投放 需要根据渠道来细分不同渠道的获取用户成本 了解用户成本 活跃用户 DAU(日活跃用户) 定义 每日登录过游戏的用户 解决问题 了解游戏的核心用户规模 了解
©️2020 CSDN 皮肤主题: 酷酷鲨 设计师:CSDN官方博客 返回首页